Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 13 de 13
Фильтр
1.
Molecules ; 27(16)2022 Aug 20.
Статья в английский | MEDLINE | ID: covidwho-2023938

Реферат

Herein, we report our success synthesizing silver nanoparticles (AgNPs) using aqueous extracts from the leaves and flowers of Calotropis gigantea growing in the geothermal manifestation Ie Seu-Um, Aceh Besar, Indonesia. C. gigantea aqueous extract can be used as a bio-reductant for Ag+→Ag0 conversion, obtained by 48h incubation of Ag+, and the extract mixture in a dark condition. UV-Vis characterization showed that the surface plasmon resonance (SPR) peaks of AgNPs-leaf C. gigantea (AgNPs-LCg) and AgNPs-flower C. gigantea (AgNPs-FCg) appeared in the wavelength range of 410-460 nm. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) revealed the agglomeration and spherical shapes of AgNPs-LCg and AgNPs-FCg with diameters ranging from 87.85 to 256.7 nm. Zeta potentials were observed in the range of -41.8 to -25.1 mV. The Kirby-Bauer disc diffusion assay revealed AgNPs-FCg as the most potent antimicrobial agent with inhibition zones of 12.05 ± 0.58, 11.29 ± 0.45, and 9.02 ± 0.10 mm for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. In conclusion, aqueous extract from the leaves or flowers of Calotropis gigantea may be used in the green synthesis of AgNPs with broad-spectrum antimicrobial activities.


Тема - темы
Anti-Infective Agents , Calotropis , Metal Nanoparticles , Acetone/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Escherichia coli , Green Chemistry Technology , Hydrazones , Indonesia , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry
2.
Enferm Clin ; 32: S30-S34, 2022 Aug.
Статья в английский | MEDLINE | ID: covidwho-1966548

Реферат

COVID-19 pandemic is a threat to public health caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Significant increases in cases occurred worldwide, including in Indonesia and Aceh Province. Pregnant women as a vulnerable group need to equip themselves with knowledge, attitudes, and practices to prevent themselves from being infected with the virus. This study aimed to determine the knowledge, attitude, and practice factors among pregnant women undergoing pregnancy in the COVID-19 pandemic. A cross-sectional online survey in Aceh was carried out among 148 pregnant women between May 3rd and May 14th, 2020. This study was conducted using a knowledge, attitude, and practice questionnaire adapted to pregnancy conditions during the COVID-19 pandemic. Responses were analyzed and categorized by using univariate analysis. The study identified that most pregnant women aged 31-35 years old (41.2%) and had higher education as their latest education (59.5%). This study found 94.6% of participants were knowledgeable on pregnancies carried out during the COVID-19 pandemic. Furthermore, 60.1% had a positive attitude, and 60.8% of pregnant women had good practice in carrying pregnancy during the COVID-19 pandemic. In conclusion, the knowledge, attitude, and practice factors of pregnant women were quite adequate. However, antenatal education is still needed to reduce anxiety in pregnant women and their family.


Тема - темы
COVID-19 , Acetone/analogs & derivatives , Adult , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Hydrazones , Pandemics/prevention & control , Pregnancy , Pregnant Women , SARS-CoV-2 , Surveys and Questionnaires
4.
Molecules ; 25(19)2020 Oct 06.
Статья в английский | MEDLINE | ID: covidwho-1389458

Реферат

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Тема - темы
Antiviral Agents/chemical synthesis , Betacoronavirus/enzymology , Hydrazones/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrazines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2 , Thermodynamics , User-Computer Interface , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
5.
ACS Chem Biol ; 16(9): 1692-1700, 2021 09 17.
Статья в английский | MEDLINE | ID: covidwho-1366786

Реферат

The pro-protein convertase furin is a highly specific serine protease involved in the proteolytic maturation of many proteins in the secretory pathway. It also activates surface proteins of many viruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furin inhibitors effectively suppress viral replication and thus are promising antiviral therapeutics with broad application potential. Polybasic substrate-like ligands typically trigger conformational changes shifting furin's active site cleft from the OFF-state to the ON-state. Here, we solved the X-ray structures of furin in complex with four different arginine mimetic compounds with reduced basicity. These guanylhydrazone-based inhibitor complexes showed for the first time an active site-directed binding mode to furin's OFF-state conformation. The compounds undergo unique interactions within the S1 pocket, largely different compared to substrate-like ligands. A second binding site was identified at the S4/S5 pocket of furin. Crystallography-based titration experiments confirmed the S1 site as the primary binding pocket. We also tested the proprotein convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found an up to 7-fold lower potency for PC7. Interestingly, the observed differences in the Ki values correlated with the sequence conservation of the PCs at the allosteric sodium binding site. Therefore, OFF-state-specific targeting of furin can serve as a valuable strategy for structure-based development of PC-selective small-molecule inhibitors.


Тема - темы
Antiviral Agents/metabolism , Furin/antagonists & inhibitors , Guanidines/metabolism , Hydrazones/metabolism , Serine Proteinase Inhibitors/metabolism , Antiviral Agents/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Assays , Furin/chemistry , Furin/metabolism , Guanidines/chemistry , HEK293 Cells , Humans , Hydrazones/chemistry , Kinetics , Proprotein Convertase 5/antagonists & inhibitors , Proprotein Convertase 5/chemistry , Protein Binding , Protein Conformation , Serine Proteinase Inhibitors/chemistry , Subtilisins/antagonists & inhibitors , Subtilisins/chemistry
6.
J Virol ; 95(21): e0097521, 2021 10 13.
Статья в английский | MEDLINE | ID: covidwho-1361966

Реферат

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike (S) protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ∼5- to 10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2. The substantial ∼5-fold or higher decrease of the half-maximal effective concentrations (EC50s) suggests a plausible treatment strategy based on the combined use of these inhibitors. IMPORTANCE Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the coronavirus disease 2019 (COVID-2019) global pandemic. There are ongoing efforts to uncover effective antiviral agents that could mitigate the severity of the disease by controlling the ensuing viral replication. Promising candidates include small molecules that inhibit the enzymatic activities of host proteins, thus preventing SARS-CoV-2 entry and infection. They include apilimod, an inhibitor of PIKfyve kinase, and camostat mesylate and nafamostat mesylate, inhibitors of TMPRSS2 protease. Our research is significant for having uncovered an unexpected synergism in the effective inhibitory activity of apilimod used together with camostat mesylate or nafamostat mesylate.


Тема - темы
Antiviral Agents/pharmacology , Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , Hydrazones/pharmacology , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Animals , Cell Line, Tumor , Chlorocebus aethiops , Drug Synergism , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/physiology , Vero Cells , Virus Internalization , COVID-19 Drug Treatment
7.
J Biol Chem ; 296: 100306, 2021.
Статья в английский | MEDLINE | ID: covidwho-1152462

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.


Тема - темы
Angiotensin-Converting Enzyme 2/genetics , Clathrin Heavy Chains/genetics , Endocytosis/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Clathrin Heavy Chains/antagonists & inhibitors , Clathrin Heavy Chains/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Hydrazones/pharmacology , Lentivirus/genetics , Lentivirus/metabolism , Protein Binding/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology , Thiazolidines/pharmacology , Vero Cells
8.
PLoS Biol ; 19(2): e3001091, 2021 02.
Статья в английский | MEDLINE | ID: covidwho-1102372

Реферат

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Тема - темы
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/virology , Reverse Genetics , SARS-CoV-2/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Codon , Humans , Hydrazones/pharmacology , Mice , Morpholines/pharmacology , Open Reading Frames , Plasmids/genetics , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism
9.
Cell Calcium ; 94: 102360, 2021 03.
Статья в английский | MEDLINE | ID: covidwho-1064903

Реферат

Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.


Тема - темы
Antiviral Agents/therapeutic use , COVID-19/virology , Ion Channels/physiology , Lysosomes/virology , SARS-CoV-2/physiology , Viral Envelope/physiology , Virus Internalization , Virus Uncoating , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Antiviral Agents/pharmacology , Drug Design , Endocytosis , Endosomes/metabolism , Endosomes/virology , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Hydrazones/pharmacology , Hydrazones/therapeutic use , Ion Channels/classification , Lysosomes/enzymology , Lysosomes/metabolism , Models, Biological , Morpholines/pharmacology , Morpholines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Vacuolar Proton-Translocating ATPases/physiology , Virus Internalization/drug effects , Virus Uncoating/drug effects
10.
Cells ; 10(1)2020 12 27.
Статья в английский | MEDLINE | ID: covidwho-1011425

Реферат

The PIKfyve inhibitor apilimod is currently undergoing clinical trials for treatment of COVID-19. However, although apilimod might prevent viral invasion by inhibiting host cell proteases, the same proteases are critical for antigen presentation leading to T cell activation and there is good evidence from both in vitro studies and the clinic that apilimod blocks antiviral immune responses. We therefore warn that the immunosuppression observed in many COVID-19 patients might be aggravated by apilimod.


Тема - темы
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Hydrazones/adverse effects , Morpholines/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Pyrimidines/adverse effects , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/immunology , Humans , Hydrazones/pharmacology , Morpholines/pharmacology , Peptide Hydrolases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism
11.
J Biomol Struct Dyn ; 39(18): 7294-7305, 2021 11.
Статья в английский | MEDLINE | ID: covidwho-724957

Реферат

The outbreak of novel coronavirus (COVID-19), which began from Wuhan City, Hubei, China, and declared as a Public Health Emergency of International Concern by World Health Organization (WHO) on 30th January 2020. The present study describes how the available drug candidates can be used as a potential SARS-CoV-2 Mpro inhibitor by molecular docking and molecular dynamic simulation studies. Drug repurposing strategy is applied by using the library of antiviral and FDA approved drugs retrieved from the Selleckchem Inc. (Houston, TX, http://www.selleckchem.com) and DrugBank database respectively. Computational methods like molecular docking and molecular dynamics simulation were used. The molecular docking calculations were performed using LeadIT FlexX software. The molecular dynamics simulations of 100 ns were performed to study conformational stability for all complex systems. Mitoxantrone and Leucovorin from FDA approved drug library and Birinapant and Dynasore from anti-viral drug libraries interact with SARS-CoV-2 Mpro at higher efficiency as a result of the improved steric and hydrophobic environment in the binding cavity to make stable complex. Also, the molecular dynamics simulations of 100 ns revealed the mean RMSD value of 2.25 Å for all the complex systems. This shows that lead compounds bound tightly within the Mpro cavity and thus having conformational stability. Glutamic acid (Glu166) of Mpro is a key residue to hold and form a stable complex of reported lead compounds by forming hydrogen bonds and salt bridge. Our findings suggest that Mitoxantrone, Leucovorin, Birinapant, and Dynasore represents potential inhibitors of SARS-CoV-2 Mpro.


Тема - темы
COVID-19 , Pharmaceutical Preparations , Antiviral Agents , Dipeptides , Humans , Hydrazones , Indoles , Leucovorin , Mitoxantrone , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2
12.
Proc Natl Acad Sci U S A ; 117(34): 20803-20813, 2020 08 25.
Статья в английский | MEDLINE | ID: covidwho-695945

Реферат

Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric vesicular stomatitis virus (VSV) containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small-molecule inhibitors of the main endosomal phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.


Тема - темы
Betacoronavirus/drug effects , Ebolavirus/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases , Triazines/pharmacology , Virus Internalization/drug effects , Animals , Betacoronavirus/physiology , COVID-19 , Cells, Cultured , Coronavirus Infections , Ebolavirus/physiology , Gene Editing , Humans , Hydrazones , Pandemics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pneumonia, Viral , Pyrimidines , SARS-CoV-2 , Viral Envelope Proteins/genetics
13.
Nature ; 586(7827): 113-119, 2020 10.
Статья в английский | MEDLINE | ID: covidwho-672174

Реферат

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Тема - темы
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Betacoronavirus/growth & development , COVID-19 , Cell Line , Cysteine Proteinase Inhibitors/analysis , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Hydrazones , Induced Pluripotent Stem Cells/cytology , Models, Biological , Morpholines/analysis , Morpholines/pharmacology , Pandemics , Pyrimidines , Reproducibility of Results , SARS-CoV-2 , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Triazines/analysis , Triazines/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
Критерии поиска